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1. Introduction

The study of string vacua in flux compactifications of type IIB has attracted much at-

tention, in part as a setting where many properties of the landscape of vacua are under

control (see [1] for a recent review). One of the first issues to be addressed here is whether

the number of realistic string vacua is finite [2]. Recently it has been shown in [3] that

the Ashok-Douglas index of supersymmetric vacua is finite. This is a crucial step towards

proving the finiteness of flux vacua.

The aim of the present work is to understand the physics underlying the previous result.

It was shown in [4] that the index of supersymmetric vacua is finite around smooth points in

moduli space; the analysis may be restricted then to singularities of the moduli space where

the curvature diverges. The finiteness proof [3] is based on Weil-Petersson geometry and a

detailed analysis of degenerations of Hodge structures on the moduli space. However, from

the string theory point of view it is not clear which is the physical mechanism responsible

for this. Specially, why singularities leading to very different field theories all give a finite

number of vacua.
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Our approach may be summarized as follows. We construct Calabi-Yau’s where singu-

larities are easily embedded and argue for finiteness of vacua around them by computing

their dual gauge theories. We establish a precise correspondence between flux and gauge

degrees of freedom. This shows that the gauge theories are generalized versions of the ones

obtained through the Dijkgraaf-Vafa correspondence [5]; but they still have finitely many

vacua. As we shall see, the underlying reason for this is the topological nature of the chiral

ring of such theories.

In section 2 we discuss the type IIB noncompact model that can embed ADE singular-

ities and study the nonperturbative superpotential generated by fluxes. Next, in section 3

we derive the formula for counting vacua in the previous setup; this involves nontrivial steps

because of the noncompact nature of the model. Then in section 4 we construct the dual

gauge theory after the geometric transition, applying S-duality to the Dirac-Born-Infeld

(DBI) action. The field theory turns out to be a generalization of the usual N = 1 SYM

encountered in geometric transitions. The argument for finiteness of vacua is presented in

section 5; it is based on the holomorphic dependence of the gauge effective superpotential

on nondynamical fields (couplings). Finally, in section 6 we show that the computations

from the gravity and gauge side agree for the conifold and Argyres-Douglas singularities.

Section 7 contains our conclusions.

2. Fluxes in noncompact Calabi-Yau’s

We start by studying moduli stabilization in type IIB theory in a Calabi-Yau threefold.

Since we are interested in analyzing a neighborhood of an ADE singularity, it is enough to

consider noncompact threefolds of the form

P := u2 + v2 + F (x, y) = 0 ; (2.1)

the nontrivial dynamics comes from the complex curve Σ: F (x, y) = 0. (2.1) may be

thought as a decoupling limit MP l → ∞ of an adequate compact variety [6], although this

will not be necessary for our purposes.

For concreteness, let us consider the case of a hyperelliptic curve where we can realize

singularities of the A-type:

F (x, y) = y2 − W ′(x)2 − fn−1(x) = 0 . (2.2)

W ′(x) is a polynomial of degree n, and will play the role of the superpotential in the gauge

theory:

W ′(x) = gn

n
∏

i=1

(x − ai) . (2.3)

fn−1(x) =
∑n

k=1 fkx
k−1 is a deformation of the singular curve y2 = W ′(x)2. Its effect is

to split ai → (a−i , a+
i ). If all the roots of W are different then the singular curve has just

ODP (conifold) singularities. We will also encounter more complicated singularities, where

three or more roots coincide.
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The fact that (2.2) is the same variety that appears in the Dijkgraaf-Vafa duality [5] is

not a coincidence; the (generalized) gauge dual will play a major role in proving the finite-

ness of the number of vacua. Furthermore, such local string models have been considered

recently in the context of soft supersymmetry breaking [7].

For our future computations, it is crucial to remark the following. In the four dimen-

sional effective field theory (EFT), the moduli (ai, fk) have a very different interpretation.

Fluctuations in ai have infinite energy and hence are non-dynamical; each arbitrary choice

of ai will give a different 4d theory so they can be interpreted as couplings. On the other

hand, the fk’s are dynamical and are interpreted as scalar fields in vector multiplets. Their

gauge theory meaning will become clear in section 4.

As shown in [8], the periods of the noncompact threefold reduce to periods of the

hyperelliptic curve:

Si =

∫

Ai

R(x)dx ,
∂F

∂Si
= 2πi

∫

Bi

R(x)dx (2.4)

with

2R(x) = W ′(x) −
√

W ′(x)2 + fn−1(x) . (2.5)

The cycle Ai surrounds the cut [a−i , a+
i ]; Bi is the noncompact cycle dual to Ai, running

from x = ai to infinity. The B-periods need to be regulated; this will be discussed shortly.

Therefore all the computations can be done directly on the hyperelliptic curve y(x) of genus

g = n − 1.

When x → ∞

R(x) → −
fn

2gnx
. (2.6)

This implies that R (and y) is a differential of the third kind on Σ [9]. For any value

x ∈ C, there are two points on the Riemann surface Σ; let P, P̃ ∈ Σ denote the points

corresponding to x = ∞. Then R(x)dx is a holomorphic differential only on the punctured

surface Σ′ = Σ − {P, P̃}.

The details of the homology of Σ and the effect of the punctures were considered

in [10] and we follow their conventions. A choice of homology cycles is shown in figure 1;

Bj runs through the j-th cut, from P̃ to P . From these noncompact cycles we construct

Ci = Bi − Bn. Besides, CP and CP̃ circle the punctures at P and P̃ respectively. The

canonical symplectic basis of Σ is (Ai, Cj), i, j = 1, . . . , g = n− 1. In Σ, A1 + . . . + An ≡ 0

so An is not independent; however, in Σ′, A1 + . . . + An = −CP . This means that we

can take An to be an independent cycle and use this to fix the values of the meromorphic

differentials at infinity. A symplectic basis for H1(Σ
′, Z) is hence (Ai, Bj), i, j = 1, . . . , n.

In the holomorphic decomposition H1(Σ, C) = H1,0(Σ, C) + H0,1(Σ, C), there is a

unique basis of holomorphic differentials [9] (ζ1, . . . , ζg) such that
∫

Aj

ζk = δjk , Im Π ≥ 0 (2.7)

where the period matrix Π is defined to be the symmetric matrix

Πjk =

∫

Cj

ζk .

– 3 –



J
H
E
P
0
2
(
2
0
0
7
)
0
6
1

A1 A2 An

CP

B1 B2 Bn

C1

C2

Figure 1: Homology elements of Σ and Σ′.

They can be constructed as linear combinations of the differentials

∂

∂fk
y dx =

xk−1

2y
dx , k = 1, . . . , n − 1 . (2.8)

The third kind differential

gn
∂

∂fn
y dx =

gnxn−1

2y
dx (2.9)

has residues ±1 at P, P̃ respectively. An adequate linear combination of (2.8) and (2.9)

will give the unique third kind differential τP, P̃ such that

ordP τP, P̃ = ordP̃ τP, P̃ = −1 ,

resP τP, P̃ = 1 , resP̃ τP, P̃ = −1 .

Every holomorphic differential on Σ′ can be written as a linear combination of

(ζ1, . . . , ζg, τP P̃ ). Such differentials are meromorphic differentials on Σ with at most simple

poles. A more symmetric description follows from taking An (instead of CP ) to be an

independent cycle; hence the basis of allowed differentials will be (ζ1, . . . , ζn−1, ζn) where

ζn is a superposition of ζi and τP, P̃ fixed by
∫

Aj
ζn = δjn, j = 1, . . . , n.

– 4 –
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2.1 Superpotential and fluxes

The complex moduli of X are stabilized by turning on 3-form fluxes G3 := F3−τH3, which

generate the nonperturbative superpotential [11]

Weff =

∫

X
G3 ∧ Ω . (2.10)

In the noncompact model, the axio-dilaton τ is fixed, corresponding to a coupling of the

4d EFT. Upon integrating over the S2 fibers given by (u, v), (2.10) reduces to the super-

potential on the hyperelliptic curve

Weff =

∫

Σ′

T ∧ R . (2.11)

The fluxes through all the compact cycles are quantized:
∫

Ai

T = NR
i − τNNS

i ,

∫

Ci

T = cR
i − τcNS

i , (2.12)

NR
i , NNS

i , cR
i , cNS

i ∈ Z. However, the fluxes through the noncompact cycles can vary

continuously and, in fact, we will argue that they have to diverge. We denote

−

∫

Bi

T := βR
i − τβNS

i . (2.13)

These quantities will play the role of running gauge couplings.

Given that the B-cycles extend to infinity, and both R and T are differentials of the

third kind, we need to regulate their B periods. Following [12] we introduce a cut-off at large

distances x = Λ0, replacing P and P̃ by Λ0 and Λ̃0. For the noncompact approximation to

be consistent, (2.11) has to be finite in the limit Λ0 → ∞. We write Br
i for the regularized

version of Bi, running from Λ̃0 to Λ0 through the [a−i , a+
i ] cut.

The Λ0 dependence of
∫

Br
i
R is most easily obtained [8] by doing a monodromy around

infinity Λ
3/2
0 → e2πiΛ

3/2
0 .1 In Σ′ this corresponds to Br

i → Br
i +Cp +CP̃ = Br

i −2
∑n

i=1 Ai ,

giving
∫

Br
i

R = −
1

2πi

( n
∑

i=1

Si

)

log Λ3
0 + . . . (2.14)

where . . . are single valued contributions. Comparing with (2.6),

fn = −4gn

n
∑

i=1

Si . (2.15)

From (2.14), we see that all the periods have the same log Λ3
0 dependence.

It was shown in [8] that the cutoff dependence of T is exactly the one needed to cancel

the logarithmic divergence from (2.14) and yield a finite cutoff independent Weff :

βR
i − τβNS

i =
1

2πi
(NR

i − τNNS
i ) log (Λ0/Λi)

3 . (2.16)

The βi where defined in (2.13) and Λi are a set of finite energy scales. Therefore (2.16) may

be interpreted as a geometric renormalization of certain bare coupling constants (βR
i , βNS

i ).

This is the geometric analog of the RG running of the gauge couplings (see sections 4 and 5).

1The exponent is the mass dimension of x: [x] = 3/2, which follows from [S] = 3.
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3. Counting vacua on curves with punctures

In this section we develop the necessary tools to count supersymmetric flux vacua on the

hyperelliptic curve (2.2). We will show that the index formula
∫

det(−R − ω) of [4] is

still valid in our case. This is a priori not obvious, the main issues being that the curve is

noncompact so many quantities need a regulator and the punctures contribute extra moduli

that have to be included. Furthermore, having fluxes βi that can vary continuously would

immediately lead to an infinite number of vacua. And finally, we will have to introduce a

tadpole cancellation condition.

Counting supersymmetric flux vacua is equivalent to studying the geometry of the

moduli space M of Σ′. There are different ways of parametrizing it; while from the EFT

it is natural to work with the Si, in the geometrical side it is more convenient to use

the coefficients fk of the deformation fn−1(x). More specifically, we parametrize M by

combinations uk of the fk (k = 1, . . . , n) such that

∂R

∂uk
= ζk ,

giving directly the basis of holomorphic differentials introduced in (2.7) plus ζn. This is

an efficient and symmetric way of taking into account the modulus from the puncture at

P and will simplify our formulas.

Σ becomes singular when two branch points coincide; this leads us to define the dis-

criminant

∆(u) :=
∏

a<b

(ea − eb)
2 (3.1)

where ea := a±i . We denote the zero locus by Σ∆; the moduli space is therefore

M = {(uk) ∈ C
n} \ Σ∆ . (3.2)

Σ∆ is codimension one in M and corresponds to conifold-like singularities: around two

coinciding roots we can always perform a holomorphic change of variables to rewrite the

curve as

u2 + v2 + y2 − x2 = 0 .

Higher order Argyres-Douglas singularities [13] occur when three or more roots coincide,

and will be discussed in sections 5 and 6.

The moduli space is a special Kahler manifold, with metric

Gil̄ = −i

∫

Σ′

ζi ∧ ζ̄l̄ (3.3)

which can be derived from the Kahler potential

K(u, ū) = −i

∫

R ∧ R̄ . (3.4)

The covariant derivative is

∇iV
j = ∂iV

j + Γj
ikV

k , Γj
ik = Gjl̄∂iGkl̄ (3.5)

– 6 –
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(∂i := ∂/∂ui) and the curvature tensor is

Rij̄kl̄ = Gis̄∂kΓ
s̄
j̄ l̄ . (3.6)

A displacement in M deforms the complex structure of Σ, so we expect the holomorphic

differentials ζl to mix with the antiholomorphic ones. It is easy to show that the covariant

derivative of a (1, 0) form gives a pure (0, 1) form:

∇iζj = c k̄
ij ζ̄k̄ , c l̄

ij := iGkl̄

∫

∇iζj ∧ ζk , (3.7)

and the relation with the curvature is

Ril̄jk̄ = −i cijmcm
k̄l̄ . (3.8)

3.1 Number of supersymmetric solutions

We want to count the vacua that preserve N = 1 supersymmetry. In the limit MP l → ∞,

supersymmetric solutions are given by ∂iWeff = 0, where ∂i := ∂/∂ui. As explained before,

this limit corresponds to taking into account only a neighborhood of the singularity, so

that supergravity effects are negligible.

Solutions to these equations may be viewed in two equivalent ways. If we want to

stabilize at a particular point in the moduli space, ∂iWeff = 0 is an on-shell condition

that restricts the possible values of the fluxes to a subspace. Indeed, since ∂iR gives by

construction a basis of H1, 0(Σ′),

∂iWeff =

∫

T ∧ ∂iR = 0 , i = 1, . . . , n

implies that

T = (NR − τNNS) τP, P̃ +

g
∑

i=1

(NR
i − τNNS

i ) ζi =

n
∑

i=1

(NR
i − τNNS

i ) ζi . (3.9)

On the other hand, a holomorphic differential is uniquely specified by giving its A-periods.

Indeed, the B-periods are then functions of the period matrix:

∫

Bj

T =

n
∑

i=1

(NR
i − τNNS

i )

∫

Bj

ζi . (3.10)

The other possible point of view is that we can turn on arbitrary fluxes through all

the cycles; this will lift almost all the degeneracy of the N = 2 supersymmetric moduli

space, leaving only some number of N = 1 supersymmetric vacua. Therefore, if we specify

arbitrarily both the A and B fluxes, (3.10) stabilizes the complex moduli of the curve:

βR
j − τβNS

j = −

n
∑

i=1

(NR
i − τNNS

i )

∫

Bi

ζj . (3.11)

The ingredient that makes the number of vacua finite in compact Calabi-Yau manifolds

is the tadpole cancellation condition [4]. There is no such constraint in the noncompact

– 7 –
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case, since the flux can go off to infinity. However, the fluxes cannot be arbitrarily large,

because once their associated energy is of order MP l, the noncompact approximation breaks

down: our local variety will be mixed with far away cycles in the CY. Therefore, in counting

the total number of vacua, we have to impose by hand a tadpole condition. By analogy

with the compact case [14], we require that

i

2Imτ

∫

Σ′

T ∧ T̄ = L . (3.12)

Using the on-shell formula (3.9) and recalling (3.3), the tadpole condition becomes

0 ≤ L =
1

2Imτ
Gil̄U

iŪ l ≤ L∗ (3.13)

where U i := NR
i − τNNS

i . L∗ is the maximum value of L, fixed by data of the compact

CY that we choose to embed (2.2).

From (3.13), the counting of supersymmetric vacua may be rephrased in terms of the

geometry of Σ: over each point (uk) in moduli space we have a ‘solid sphere’ U i(u), with

volume L∗. Each of these allowed points determines a point in flux space; the number

of such points will give the number of supersymmetric vacua. Furthermore, (3.13) shows

why degeneration limits may produce an infinite number of vacua: if Gil̄ develops a null

direction, the tadpole condition will not bound the number of flux points. In other words,

from this analysis it is not clear how configurations where one flux goes to infinity and

another goes to minus infinity, in a correlated way such that L ≥ 0 stays finite, will be

ruled out. The gauge theory analysis will shed light on this point.

Finally, even with the tadpole condition, the number of solutions to the equations of

motion (3.11) with continuous fluxes βi will be infinite. Fortunately, there is a simple way

out of this problem. Recall that the noncompact hyperelliptic curve should be considered

as part of a compact CY. Instead of parametrizing the fluxes with arbitrary energy scales

Λi, we take them to be integers. Then (2.16) will fix the energy scales at particular values,

depending on the fluxes. This approach was also taken in [14] to study the consequences of

the Klebanov-Strassler solution [15] and leads to the usual exponentially large hierarchies

of energy scales, as we show later.

Now we have all the elements to count vacua on complex curves with punctures; the

derivation of the formula for the density of vacua continues as in [4]: the number of super-

symmetric vacua is given by

Nvac(L ≤ L∗) =

∫ ∞

0
dL θ(L∗ − L)

∑

NR,NNS

δ

(

L −
1

2Imτ
Gil̄U

iŪ l

)

×

×

∫
( n

∏

i=1

d2ui

)

δ(∂W ) (3.14)

with

δ(∂W ) :=
∏

l

δ(∂lW ) δ(∂l̄W
∗) |det ∂2W | .

– 8 –
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Here,

∂2W :=

(

∂l∂nW ∂l∂n̄W ∗

∂l̄∂nW ∂l̄∂n̄W ∗

)

. (3.15)

Because of δ(∂W ), we can replace ∂l → ∇l in (3.15).

The main simplification in the noncompact case is that, since ∇lζ̄n̄ = 0, ∇l∂n̄W ∗ = 0,

and then

|det ∂2W | = det ∂2W = |det∇l∂nW |2 . (3.16)

Therefore the number of supersymmetric vacua coincides with the supersymmetry index,

which is topological and, as we shall see, much easier to compute. On the contrary, in the

compact case, when gravity is not decoupled, the supersymmetric index gives just a lower

bound to the number of vacua.

The final result is

NC
vac(L∗) =

(2πL∗)
2n

πn(2n)!

∫

M
det (−R) (3.17)

where detR := dets̄r̄

(

Rs̄
r̄kl̄

duk∧dūl
)

. As expected, this coincides with [4] when MP l → ∞.

The index C is introduced for clarity reasons, to mean that this is the result from the closed

string side.

4. The dual gauge theory

In this section we construct the supersymmetric gauge theory which is dual to the previous

gravity configuration. The analysis will be done along the lines of the Dijkgraaf-Vafa (DV)

correspondence, based on geometric transitions connecting open and closed superstrings.

However our situation is more general and will require additional techniques.

Let us first quickly review the DV case, which corresponds to the flux subspace NNS
i =

0, βR
n = 0 and βNS

i = βNS
n for all i = 1, . . . , n−1. The large N duality between open/closed

topological strings was derived in [16]. The role of the holomorphic matrix model and the

relation to N = 1 SYM was considered in [5, 8, 17]. On the other hand, in [18] the DV

relation was derived purely from the field theory side, using the chiral ring relations and

the Konishi anomaly.

Close to the semiclassical limit |a+
i −a−i | ¿ ai, Si → 0, the geometry (2.2) corresponds

to a product of n independent deformed conifolds. They are cones over S3 × S2 and,

while the S2s are collapsed to zero, the S3s have finite size as measured by Si 6= 0. In

the geometric transition the n 3-spheres Ai are collapsed and we blow-up the conifolds at

x = ai by introducing n P
1’s. Then the RR fluxes NR

i will disappear and, instead, we will

have NR
i D5 branes wrapping the corresponding P

1s. The DV correspondence states that

the large NR :=
∑n

i=1 NR
i limit of the closed string theory on the deformed threefold is

equivalent to the open string theory on the resolved threefold, with the previous relation

between RR fluxes and D5 branes.

W (x) plays the role of a tree-level superpotential for the chiral superfield Φ in the

N = 2 vector multiplet of a pure U(NR) SYM; this potential breaks N = 2 to N = 1.

Classically, the number of vacua is given by the number of ways of choosing NR
i eigenvalues

– 9 –
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of Φ equal to ai, with
∑

i N
R
i = NR. This breaks U(NR) →

∏

i U(NR
i ). βNS

n is the bare

gauge coupling of U(NR), while cR
i are relative changes in the θ-angles of the U(NR

i )

factors [18]. Furthermore, the complex moduli measure gaugino condensation

Si = −
1

32π2
〈Tr WαW αPi〉 (4.1)

(Pi projects onto Φ = ai).

4.1 Dualities and geometric transition

We return now to the general flux configuration (NR
i , NNS

i ), (βR
i , βNS

i ). Denote NR :=
∑n

i=1 NR
i , NNS :=

∑n
i=1 NNS

i and r = gcd(NR, NNS), i.e., NR = nRr and NNS = nNSr

with nR and nNS relatively prime.

Consider first the effect of the geometric transition around the semiclassical regime. In

the open string side we end with NR
i D5-branes and NNS

i NS5-branes wrapping the i-th P
1.

The βi do not have a brane analogue since the B-cycles remain 3-cycles; their meaning will

become clear later. Our aim is to find a gauge theory interpretation for these n (NR
i , NNS

i )

5-brane states. The basic requirement is that the infrared limit of this configuration shall

be given by composite fields Si with an effective superpotential

Weff =
n

∑

i=1

(NR
i − τNNS

i )
∂F

∂Si
− 2πi

n
∑

i=1

(βR
i − τβNS

i )Si ; (4.2)

we omitted a (−1/2πi) factor as compared to (2.11).

We expect each (NR
i , NNS

i ) 5-brane to decay to ri copies of an (nR
i , nNS

i ) bound

state [19]; here NR
i = nR

i ri, NNS
i = nNS

i ri with nR
i and nNS

i coprime. However, the

generic point in flux space will give n different types of bound states and it is hard to see

how this may come from a unique UV gauge theory. Instead, the straightforward way of

getting a gauge theory is if on each P
1 we have the same type of bound state. Combining

this with the requirement that the sum of fluxes (NR = nRr,NNS = nNSr) remains con-

stant implies that we will have r copies of the bound state of type (nR, nNS) distributed

over all the different P
1s.

The physical mechanism that may be responsible for this is already known, namely,

eigenvalue tunnelling in matrix models. Consider what happens when we tune the couplings

ak from (2.3) so that the n cuts come very close together: y2 = x2n + ε, ε → 0. In this

limit, the process of eigenvalue tunnelling between different cuts becomes relevant; this

will result in RR flux transfer until we end with the same (nR, nNS) bound states in all

the cuts. The tunnelling is explained by D5 branes wrapped around an S3 interpolating

between two S2s in the resolved geometry [17]. This object is a domain wall from the EFT

point of view, with tension ∂F/∂Si − ∂F/∂Sj . After the tunnelling has taken place, we

can tune back the couplings to their initial values.

We will now start to argue that the previous gauge theory is indeed the dual to our

gravity configuration. The key elements entering into the argument are S-duality (decay

to bound states) and moving the Ai cycles around, which is associated to an Sp(2n− 2, Z)

symmetry transformation. We work in the deformation side. Denote the deformed threefold

– 10 –
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defined in (2.1) and (2.2) by Xd; the limit fn−1(x) = 0 is a singular CY Xs with (generically)

conifold degenerations.

Recall that S-duality acts by SL(2, Z) transformations
(

F3

H3

)

→

(

a b

c d

) (

F3

H3

)

, τ →
aτ + b

cτ + d
, ad − bc = 1 . (4.3)

This doesn’t change the geometry of the hyperelliptic curve (off-shell). On the other hand,

the curve (2.2) has a symmetry group Sp(2n−2, Z) of matrices mixing the canonical cycles

(Ai , Cj). These transformations are generated by all the possible interchanges of the roots

a±i . The generators are [20]

J =

(

0 I

−I 0

)

, A =

(

(At)−1 0

0 A

)

, B =

(

I 0

B I

)

. (4.4)

A ∈ GL(n − 1, Z) and B is a symmetric matrix with integer coefficients. Note that

A1 + . . . + An = −CP is invariant under Sp(2n − 2, Z) because the loop around infinity

doesn’t change under monodromies of the roots.

The first step is to use S duality to set the total NS flux NNS = 0 and hence NR = r.

The transformation doing this is
(

nRr

nNSr

)

→

(

a −b

−nNS nR

) (

nRr

nNSr

)

=

(

r

0

)

(4.5)

for some integers (a, b) solving anR − bnNS = 1. We denote with tildes the transformed

quantities after S duality.

Next we set ÑNS
i = 0, i = 1, . . . , n − 1 with Sp(2n − 2, Z) transformations. This is

done with the ‘diagonal’ SL(2, Z)i ⊂ Sp(2n − 2, Z) which mix the Ai and Ci cycles only:
(

ÑNS
i

c̃NS
i

)

→

(

ai bi

ci di

) (

ÑNS
i

c̃NS
i

)

=

(

0

c̃
′NS
i

)

. (4.6)

Primes refer to the transformed cycles. Symplectic transformations act in a complicated

way on An; however, since we already fixed NNS = 0 and A1 + . . . + An is a symplectic

invariant, we deduce that the combined application of (4.5) and (4.6) fixes all Ñ
′NS
i = 0,

i = 1, . . . , n.

Summarizing, we have showed how S⊗Sp(2n−2, Z) may be used to set all the NS fluxes

through the A cycles to zero. The transformed axio-dilaton is τ̃ = (aτ − b)/(−nNSτ +nR);

the transformation of βi will be analyzed shortly. Consider next the effect of the geometric

transition [21] Xd → Xs → Xr where Xr is the projective resolution blowing-up each

conifold point in Xs to a P
1; see figure 2. We end with r copies of the same 5-brane

bound state (nR, nNS), wrapping the n P
1 s. The gauge theory is then U(r) →

∏

i U(Ñ
′R
i )

where Ñ
′R
i is the number of (nR, nNS) bound states on the i-th P

1. This is in agreement

with our previous bound state reasoning in terms of eigenvalue tunnelling. The 3-cycles

Bi don’t collapse in the geometric transition, so in the open string side we still have the

fluxes (βR
i , βNS

i ).

– 11 –
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Figure 2: Geometric transition in the presence RR and NS fluxes.

4.2 Properties of the gauge theory

We don’t know how to prove the duality Xd ←→ Xr conjectured in the previous subsection.

Although the introduction of both RR and NS fluxes through the compact cycles is a natural

extension of the Dijkgraaf-Vafa duality, an open topological string description of (nR, nNS)

5-brane bound states is not available. Instead, by computing the effective superpotential

for both sides, we shall show that their predictions agree in the IR limit. As a further

check, in section 6 we will prove that the gravity and gauge descriptions have the same

number of degrees of freedom even in strongly coupled regimes, such as Argyres-Douglas

singularities. (p, q) fivebranes wrapping an S2 have also been considered in the different

context of N = 1∗ SYM [22].

Consider how the effective flux superpotential (4.2) transforms under the S ⊗ Sp(2n−

2, Z) transformation given by (4.5) and (4.6):

W̃ ′
eff =

n
∑

i=1

Ñ
′R
i

∂F

∂S′
i

− 2πi
n

∑

i=1

(

β
′R
i − τβ

′NS
i

nR − τnNS

)

S′
i .

We made explicit the S duality transformation in the second term to exhibit the fractional

dependence on (nR − τnNS); apart from this, (Ñ
′R
i , β

′R
i , β

′NS
i ) are all integers. Rename

Ñ
′R
i → Ni and drop all the primes:

Weff =

n
∑

i=1

Ni
∂F

∂Si
− 2πi

n
∑

i=1

(

βR
i − τβNS

i

nR − τnNS

)

Si . (4.7)

Here (Ni, βR
i , βNS

i ) are arbitrary integers and shouldn’t be confused with the original

parameters appearing in (4.2).

Let us spell out the holomorphic properties of the gauge theory. Six dimensional gauge

theories based on (p, q) 5-branes were studied for example in [23]. The situation here is

more complicated, because the bound states are wrapping P
1 s, and there is (βR

i , βNS
i ) flux

through such cycles.

Given that we have the same bound states (nR, nNS) in every P
1, it is enough to study

a single bound state wrapping a P
1 and extending in four space-time dimensions. Since nR

– 12 –
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and nNS are relatively prime, the S-duality transformation (4.5) maps the bound state to

a single D5 brane. We denote with tildes the variables after the transformation. The DBI

action is [19]

S = Skin + SCS

Skin = −µ5

∫

d4x

∫

S2

dΩ2 e−Φ̃
[

− det(G̃ + B̃ + F )
]1/2

SCS = iµ5

∫

[

C̃6 + (B̃ + F ) ∧ C̃4 +
1

2
(B̃ + F )2 ∧ C̃2 +

1

6
(B̃ + F )3 C̃0

]

. (4.8)

F := 2πα′Fab denotes the U(1) gauge field on the D-brane. Near the geometric transition

point, where the S2 shrinks, the holomorphic gauge coupling is given by

τ̃Y M = (2πα′)2µ5

(
∫

S2

C̃2 − (C̃0 + ie−Φ̃)

∫

S2

B̃2

)

. (4.9)

The action for the (nR, nNS) bound state and the properties of its gauge theory follow

from (4.8) and S-duality:

τ̃ = C̃0 + ie−Φ̃ =
aτ − b

−nNSτ + nR
,

C̃2 = aC2 − bB2 , B̃2 = −nNSC2 + nRB2

G̃ab = |nR − nNSτ |Gab , C̃4 = C4

B̃6 − τ̃ C̃6 =
B6 − τC6

nR − τnNS
. (4.10)

Noting that
∫

S2

(C2 − τB2) = βR − τβNS ,

the gauge coupling becomes

τ̃Y M =
βR − τβNS

nR − τnNS
, (4.11)

where we set (2πα′)2µ5 = 1. This coincides exactly with the fractional holomorphic cou-

pling derived from the flux side, eq. (4.7). Furthermore, once we map the system of (p, q)

5-branes to D5 branes, the arguments of [18] may be applied to this N=1 SYM theory to

deduce that the effective superpotential has precisely the form given in (4.7). Generalizing

to the case of n P
1s, the gauge theory is U(r) →

∏

i U(Ni),
∑

i Ni = r, and each U(Ni) has

a holomorphic coupling

τi :=
βR

i − τβNS
i

nR − nNSτ
. (4.12)

From our previous construction, it is clear that we didn’t fix all the symplectic sym-

metries. In particular, we can still perform monodromies Si → e2πi Si corresponding to

Bi → Bi + Ai. This implies that τi is defined only modulo Ni or, equivalently,

βR
i = 0, . . . , nRNi − 1 ; βNS

i = 0, . . . , nNSNi − 1 . (4.13)
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We thus see that the information in the original brane system is not lost after the S-duality

(NR, NNS) → (r, 0), but rather it is encoded in the holomorphic gauge couplings of the

new theory.

It is worth noting that the holomorphic couplings τi, besides being fractional, they are

also independent since we can choose arbitrary integers βi. Equivalently from (2.16), each

U(Ni) factor has an independent physical scale Λi. This situation is natural from the DBI

action, but it cannot arise as the IR limit of the usual N = 2 U(r) SYM broken to N = 1

by the tree level superpotential W (Φ). Let us exhibit a simple generalization that may

account for independent τi s. Coming from string theory, we won’t require this UV gauge

theory to be renormalizable, so we look for a modified kinetic term

Lkin ∼

∫

d2θ Tr (W αWα f(Φ)) . (4.14)

If W (Φ) = 0, the gauge group is not broken and f(Φclass) = τY M should give a unique

gauge coupling. On the other hand, when we turn on the superpotential, the basic property

of f(Φ) is that it should be equal to τi on the subspace Φ = ai. The matrix function that

does this is simply constructed from the idempotents of the classical chiral ring:

Ei(Φ) =

∏

j 6=i(Φ − ajI)
∏

j 6=i(ai − aj)
, (4.15)

which satisfy Ei(aj) = δij . Then we may define

f(Φ) :=

n
∑

i=1

τiEi(Φ) . (4.16)

The nonrenormalizable gauge theory (4.14) with this choice of f(Φ) gives independent

gauge couplings in the infrared.

Another striking property of this brane system is the appearance of noncommutative

dipoles in the UV. This is due to the NS fluxes through the P
1 s. Such dipole deformations

of the gauge theory have been recently considered in [24] for geometric transitions based on

D5 branes. It would be interesting to try to extend this analysis to the case of (nR, nNS)

5-branes, although the supergravity description might be much more involved.

To summarize, using S ⊗ Sp(2n − 2, Z) in this section we mapped a general flux con-

figuration to a gauge theory, after the geometric transition. All the flux parameters have

a natural gauge interpretation; in particular the fluxes (βR
i , βNS

i ) through the 3-cycles,

which don’t collapse after the transition, don’t contribute brane degrees of freedom. They

combine in a nontrivial way to determine the holomorphic gauge couplings of the different

gauge factors.

5. Finiteness of vacua in the dual gauge side

The purpose of constructing a dual gauge theory to count flux vacua is that in such field

theories the number of vacua is always finite. The geometric transition preserves this

number. In the present section we show from the gauge theory side that Nvac is indeed

finite.
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5.1 Proof of the finiteness of Nvac

We begin by showing that the number of supersymmetric gauge vacua, i.e., solutions to

∂Weff/∂Si from equation (4.7), is finite. As discussed before, this is based on the tadpole

constraint

L =
n

∑

i=1

Niβ̃
NS
i . (5.1)

Here β̃NS
i = (nRβNS

i − nNSβR
i ); also recall that Ni := Ñ

′R
i , βR

i := β
′R
i , βNS

i := β
′NS
i .

We have to sum over all choices of fluxes satisfying (5.1). Here we run into the main

obstacle. The reason why this could in principle diverge is that there may be flux con-

figurations such that two terms in L grow in a correlated way to plus and minus infinity

respectively, but keeping L finite and positive. This would give an infinite number of

allowed flux points (and hence supersymmetric vacua).

This is the point where having a gauge theory based on the geometry (2.2) proves use-

ful. In the gauge theory, Weff is holomorphic in the couplings ak, so the number of solutions

to the equations ∂Weff/∂fi = 0 is invariant under smooth changes of the parameters, being

protected by holomorphy.2 An equivalent statement is that the number of vacua coincides

with the dimension of the chiral ring of the theory, and such a quantity is independent

of the gauge couplings. This topological behavior was already encountered in the gravity

side, when we showed (section 3.1) that the number of supersymmetric vacua coincides

with the supersymmetric index.

We now argue, from a variation of the ak, that each term in L is in fact positive even

around singularities. The discriminant locus consists of generic conifold points and higher

codimension AD singularities. The later cannot be neglected because they have a higher

‘weight’ in the counting of degrees of freedom, as measured by det(R). Both situations will

be exemplified in section 6.

Consider a point in moduli space M corresponding to the semiclassical limit. This

is just the origin Si → 0 of M. In this case the geometry is a product of independent

conifold-like configurations. The effective superpotential follows from (4.7) using mon-

odromy arguments [8]:

Weff =

n
∑

i=1

NiSi

(

log

(

Λ3
0

Si

)

+ 1

)

− 2πi

n
∑

i=1

(

βR
i − τβNS

i

nR − τnNS

)

Si . (5.2)

Denoting θi/2π := Re(τi) and 1/g2
i := Im(τi), the supersymmetric vacua may be written

as

Si = exp(−iθi/Ni) exp(−2π/g2
i Ni)Λ3

0 = exp(−iθi/Ni)Λ3
i . (5.3)

Then counting vacua in the neighborhood of the conifold limit implies summing over

fluxes giving 0 ≤ |Si| ≤ (Λ f
i )3.3 Clearly this requires sign(nRβNS

i − nNSβR
i ) = sign(NR

i ),

to avoid vacua exponentially far away from the origin. We therefore see that the number of

2Since off-shell the fi don’t depend on ak, it is more convenient to take derivatives w.r.t. fi and not Si.
3(Λ f

i )3 is some final energy scale associated to U(Ni).

– 15 –



J
H
E
P
0
2
(
2
0
0
7
)
0
6
1

vacua around the semiclassical point is finite because each term in L is separately positive.

Without loss of generality, we can just take all the fluxes to be positive.

The holomorphic dependence of Weff on ak implies that this is true for the whole

moduli space. Indeed, every point in moduli space can be connected to the semiclassical

limit by such a variation of couplings. Of course, strongly coupled limits may have quite

complicated superpotentials, but we are interested in the number of vacua, which is a

topological invariant.

For concreteness, we show this for n = 2. The hyperelliptic curve is

y2 = (x2 + g1x + g0)
2 + f2x + f1 . (5.4)

We only need to worry about singularities in M since it is known that Nvac is finite around

smooth points. There are two types; the codimension one singularities are conifolds, and

correspond to the semiclassical regime where we showed the finiteness of Nvac. There is

also a codimension two A2 singularity. It corresponds to the singular limit of y:

y2 = (x3 − δux − δv)(x − 1) ; δu , δv → 0 . (5.5)

Three roots coincide at x = 0 giving two vanishing intersecting cycles, while the last one

is fixed at x = 1. Comparing to (5.4), we find the ‘double scaling’ limit

f1 = δv −

(

1

8
+

δu

2

)2

, f2 = −
1

8
+

δu

2
− δv , (5.6)

and, for the couplings,

g1 = −
1

2
, g0 = −

(

1

8
+

δu

2

)

. (5.7)

To connect this to the semiclassical point, vary the couplings gi from their previous

double-scaled values to gi À fi, while keeping the fi fixed at (5.6). Clearly, at the new

point in M the semiclassical approximation is valid. This process is depicted in figure 3.

Therefore we have shown that any point in M can be connected to the conifold limit

by a smooth variation of the ak. In other words, the gauge theory tells us how to do, on

every point in moduli space, a change of variables Si(ak) → Si(ãk) such that: (i) each term

in L is explicitly positive and (ii) the number of supersymmetric vacua doesn’t change.

Furthermore, since we can work in a regime fi → 0 by tuning ai À fi, we can always

do power-series expansions and hence the change of variables is continuous. This maps

compact regions to compact regions, assuring that the number of vacua doesn’t diverge.

The meaning of this transformation becomes transparent if we consider the chiral ring.

It is generated by idempotents and nilpotents [25]. If we move around the moduli space Si

by changing the couplings until we encounter a singularity, the result on the chiral ring is

that some idempotents become nilpotents. The total number of generators is conserved in

the process.
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Figure 3: Holomorphic change of couplings that connects the AD point and the semiclassical limit.

5.2 Formula for Nvac(L∗)

In order to compare with the gravity side result (3.17), we next compute the number of su-

persymmetric gauge vacua around an arbitrary point in M. As argued before, holomorphy

implies that we can as well compute it around the semiclassical limit.

Because of the monodromies leading to (4.13), at fixed Ni, the number of vacua is

Nvac({Ni}) = (nRnNS)n
n

∏

i=1

N2
i ; (5.8)

the Ni satisfy
∑

i Ni = r. This is quite different to the result from a standard N = 1

SYM,
∏

i Ni. Eq. (3.17) includes an integration over a region in moduli space. We need

to specify the analogous condition in the gauge side. It is associated to the RG flow of

the gauge theory from the cutoff Λ0 up to some IR energy scale Λf . For concreteness, we

compute Nvac for the simplest case, namely when each U(Ni) flows up to a scale Λ f
i . In

other words, we assume that we are integrating on disks 0 ≤ |Si| ≤ (Λ f
i )3.

The renormalization of gauge couplings (2.16) applied to the case (4.7) gives

β̃NS
i

n2
R + n2

NS

=
1

2π
Ni log

(

Λ0

Λi

)3

. (5.9)

Here we set, for simplicity, C0 = 0, gs = 1. This is possible because in the noncompact

model the axio-dilaton is fixed and behaves as a coupling; therefore Nvac cannot depend

on it. Since we are summing the degrees of freedom with 0 ≤ Λi ≤ Λ f
i , (5.9) implies

β̃NS
i ≥

1

2π
(n2

R + n2
NS)Ni log

(

Λ0

Λ f
i

)3

. (5.10)
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Replacing in the gauge tadpole condition (5.1),

(n2
R + n2

NS)

n
∑

i=1

N2
i log

(

Λ0

Λ f
i

)3

≤ 2π L . (5.11)

Once we fix arbitrary (Ni), the dual fluxes (β̃NS
i ) are integers satisfying the diophantine

equation (5.1). This has solutions iff gcd(Ni)|L; the number of integer solutions is of course

infinite, but we argued that sign(Ni) = sign(β̃NS
i ). So we take the fluxes to be positive,

and multiply the number of vacua by 2n. The number of positive solutions to the tadpole

constraint will be denoted by b+({Ni}). For large L, this number is typically of order 1.

Combining all the previous elements, the total number of supersymmetric vacua is

Nvac(L∗; Λ
f ) = 2n

L∗
∑

L=0

∑

nR, nNS coprime

(nRnNS)n
∑

{Ni}: gcd(Ni) |L

[

n
∏

i=1

N2
i

]

×

× b+({Ni}) · T (Ni;nR, nNS) . (5.12)

The notation here is the following. The sum on (nR, nNS) is over coprime integers. The

sum on (Ni) should be done over inequivalent fluxes with respect to the residual symplectic

transformations; indeed, some generators in (4.4) were not fixed by the mapping to the re-

gion (NR
i , NNS

i ) → (NR
i , 0). Also, recall that b+({Ni}) is the number of positive solutions

to the diophantine equation (5.1); for large L∗, it will give subleading contributions so,

to a good approximation, we may set b+ ∼ 1. Lastly, T (Ni;nR, nNS) specifies the region

in flux space over which we are summing vacua. For instance, if we integrate on disks of

radius (Λ f
i )3, (5.11) gives the Heaviside function

T (Ni;nR, nNS) = Θ

(

2π L − (n2
R + n2

NS)
n

∑

i=1

log

(

Λ0

Λ f
i

)3

N2
i

)

. (5.13)

6. Examples

In this section we compare the formulas (3.17) and (5.12) for Nvac in the gravity and gauge

side, respectively. This is done for the conifold and Argyres-Douglas degenerations.

6.1 Example 1: the conifold

Gravity side. We start by considering the case of a single deformed conifold in the

closed string side. The total number of vacua for the conifold has been computed in [26] in

the context of F-theory compactifications. Here we quickly summarize the result for fixed

axio-dilaton.

There is only one compact cycle (A), and a dual noncompact one (B). From monodromy

arguments,
∫

A
Ω = z ,

∫

B
Ω =

1

2πi
z log

(µ

z

)

+ . . . .

z is the complex modulus (here we don’t use S to make clear the distinction between the

gravity and gauge side) and µ is a constant added for dimensional reasons. It depends on
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the cutoff necessary to regulate the B-integral. Further, the dots refer to analytic terms in

z.

Replacing in (3.4) and then in (3.6),

Gzz̄ ≈ c log
(

µ2/|z|2
)

, Rz
zzz = −

1

|z|2
(

log µ2/|z|2
)2 .

For z → 0, G ¿ R and hence det(−R − ω) ≈ det(−R), in agreement with the deduced

result (3.17). Integrating on 0 ≤ |z| ≤ R, the number of supersymmetric vacua for fixed

axio-dilation is

NC
vac(L∗) =

2π2 L2
∗

log µ
R

. (6.1)

The superindex C reminds us that this is the result from the closed string side.

Gauge theory side. Next we calculate in detail the result from (5.12). From the gauge

theory side, the conifold corresponds to the semiclassical limit of the superpotential with

n = 1: W ′(x) = x and from (2.15), fn−1(x) = f1 = −4S, where we are setting gn = 1.

There are N vacua satisfying

|S| = e−2π/g2N Λ3
0 := Λ3

and we have to compute the number of vacua with |S| ≤ Λ3
f for some final energy scale

Λf . From the running of the gauge coupling,

β̃NS ≥
1

2π
(n2

R + n2
NS)N log

(

Λ0

Λf

)3

.

The meaning of this formula is that the gauge theory analogue of integrating a given

modulus on a disk is the RG flow of the gauge coupling from the UV cutoff up to a final

energy scale given by the radius of the disk.

The number of vacua for given L is then given by

NO
vac(L) = 2

∑

N |L

N2
∑

nR, nNS coprime

nRnNS Θ

(

2πL

log (Λ0/Λf )3N2
− (n2

R + n2
NS)

)

; (6.2)

we multiply by 2 since we are considering only N ≥ 0. The superindex O refers to the

open string side.

The gravity result det(−R) arises in the continuum limit L∗ À 1. Therefore we need

to estimate the asymptotic behavior of
∑L∗

L=0 NO
vac(L). We did this with a C++ program4

that adds coprime numbers (modulo permutations) inside a disk of radius

2πL

log (Λ0/Λf )3N2

and then sums over all the divisors of L, according to (6.2).

4We thank S. Lukic for help with this.
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Figure 4: Plot of Nvac(L∗) for the conifold, showing both the gravity and gauge side predictions,

which agree almost exactly. We chose a scale log (Λ0/Λf)3 = 8π to simplify the results.

Fitting the numerical predictions of log Nvac(L∗) for L∗ = 1000, we deduce an asymp-

totic dependence logNvac(L∗) ≈ 2.017 log (L∗). To leading order we find

Nvac(L∗) =
8π

log (Λ0/Λf )3
(

0.7852L2.017
∗ − 12.370L∗ log L∗

)

. (6.3)

The numerical results and the fit are shown in figure 4. We don’t completely understand

the subleading corrections to the gravity result. Even though we fit the numerical formula

with L∗ log L∗, the power of L∗ could be smaller.

Let us compare (6.1) and (6.3); we naturally identify R := Λ3
f and µ := Λ3

0 and

both results match very well. The power 2.017 is a good approximation to the gravity

result L2
∗. It turns out to be related to properties of the divisor functions σk(n). The

agreement is nontrivial, involving very different concepts in the gauge and gravity side.

The crucial ingredients from the gauge side are the running of the gauge coupling and the

correct tadpole condition. In other words, the gravity side with general fluxes has the same

number of degrees of freedom as the SYM theory described in section 4.

6.2 Example 2: Argyres-Douglas singularities

Next we analyze some aspects of two-parameter models which arise from n = 2 superpo-

tentials:

y2 = (x2 + g1x + g0)
2 + f2x + f1 . (6.4)

The novel phenomenon for n ≥ 2 is the appearance of Argyres-Douglas points, when three

or more roots coincide; see (5.5). When intersecting cycles vanish simultaneously nonlocal

dyons become massless. The physics is radically different to that of the conifold, giving

rise to an interacting SCFT [13].

Unfortunately, the complications of the model forbid a straightforward analysis similar

to the one done in the previous subsection. From the gravity side, the discriminant locus is
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a knot-like complex curve [13] with self-intersections; integrating over all the moduli space

to get the total number of vacua is hence quite involved. On the other hand, in the gauge

theory, the combinatorics present in formula (5.12) are equally complicated. Therefore we

will only study the vicinity of the AD point and we will show that the number of vacua

obtained from det R has the expected gauge theory scaling behavior.

Gravity side. 5

The dynamics around the AD point is controlled by the small complex curve

w2 = x3 − δux − δv . (6.5)

The discriminant locus is

∆ = 4(δu)3 − 27(δv)2 = 0 , (6.6)

which is not smooth; indeed

∆ = 0 , ∂δu∆ = ∂δv∆ = 0

has solution (δu = 0 , δv = 0). This is the Argyres-Douglas point [13]. Usual monodromy

arguments used to construct the periods cannot be applied now, since the self-intersection

is not normal. Therefore we need to blow-up (6.6). The general procedure is described

in [27] and has been recently applied to our present situation in [28].

The normal-crossing variables close to the AD point turn out to be

∆ :=
(δu)3

(δv)2
−

27

4
, η :=

δv

δu
. (6.7)

The original discriminant locus corresponds to ∆ = 0; η is the scaling variable in the SCFT.

By rescaling x = ηx̃, w = η3/2w̃ the dependence on η disappears; the dependence on ∆

follows from the usual monodromy ∆ → e2πi ∆.

We do a symplectic transformation so that the small periods are (S1,
∂F
∂S1

) and the

large ones are (S2,
∂F
∂S2

). The dependence on ∆ and η is

S1 ∝ η5/2 ∆ ,
∂F

∂S1
∝ η5/2 ∆ log ∆ . (6.8)

The large periods are analytic in ∆ and η.

Replacing these expressions in (3.3) and (3.6), the density of vacua (3.17) around the

AD point is

dNvac ∝
L4
∗ d2 ∆ d2η

|η| |∆| 2 (log |∆|)3
. (6.9)

We see that the density of vacua is integrable on a disk around (∆, η) = (0, 0). In particular,

integrating on 0 ≤ |∆| ≤ Λ3
f gives a total number of vacua

NC
vac(L∗,Λf ) =

2π2k L4
∗

(log (Λ0/Λf )3)2
. (6.10)

5Done in collaboration with F. Denef and B. Florea.
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This proves that the number of vacua around the AD singularity is finite. The constant

k depends on analytic data from the long cycles; in general it cannot be computed using

monodromy arguments.

The result (6.9) is of the general form encountered in the analysis of different singu-

larities in [28]

dNvac ∼
dz dz̄

|z|2(log|z|)p
(6.11)

where z = 0 denotes de discriminant locus (in normal crossing variables). We will now

justify this behavior from the field theory point of view.

Gauge side. This example is quite interesting, since we have to use the map connecting

the strongly coupled AD point to the semiclassical regime.

The procedure was described in section 5. We vary gk from (5.7) to W ′(x) = x2 − a2,

while keeping fi fixed at (5.6). The condition that we end in the semiclassical regime

is a À fi. Furthermore, we can set η = 1 by choosing a perturbation with δu = δv.

Indeed, we only want to reproduce the divergence 1/(log |∆|)3 associated to the ‘physical’

discriminant component ∆ = 0. Expanding for a large, the expression for Si in terms of ∆

is

S1 ≈ S2 =
iπ

4
− iπ

(

27

4
+ ∆

)

. (6.12)

Also, S1 − S2 ∼ O(a−3/2). Therefore, to leading order in a, S1 = S2 and they depend

linearly on ∆; up to a shift by a constant, the integral 0 ≤ |∆| ≤ Λ3
f is hence translated to

0 ≤ |Si| ≤ Λ3
f .

In this case, the gauge vacua formula (5.12) reads

NO
vac(L∗) =

L∗
∑

L=0

∑

(N1, N2): gcd(Ni)|L

N2
1 N2

2

∑

(nR, nNS) coprime

×

× (nR nNS)2 Θ

(

2πL

log (Λ0/Λf )3
− (n2

R + n2
NS)(N2

1 + N2
2 )

)

. (6.13)

A numerical evaluation shows that (6.13) has the same dependence as (6.10):

NO
vac(L∗) ≈

2π2

(log (Λ0/Λf )3)2
0.0235L4.060

∗ , (6.14)

for L∗ ≈ 1000. Subleading corrections should be taken into account, but their general

dependence is hard to estimate.

This is a nontrivial check for the argument that we can map any complicated singularity

to the conifold regime and equivalently count vacua there. Moreover, n = 2 is the smallest

genus for which the symplectic transformations Sp(2n−2, Z) come into play to count gauge

vacua.

– 22 –



J
H
E
P
0
2
(
2
0
0
7
)
0
6
1

7. Conclusions

In this paper we have shown that the number of supersymmetric vacua Nvac around ADE

singularities of Calabi-Yau’s in type IIB flux compactifications is finite. The argument is

based on the existence of dual gauge theories, where finiteness may be shown.

Such singularities can be embedded in the noncompact CY (2.1) and it is crucial

that some of the fields become nondynamical (couplings). The moduli are stabilized by

turning on both RR and NS flux through the compact cycles. We then perform a geometric

transition to connect this to the open string side.

The gauge theory is based on 5-brane bound states wrapping the resolved 2-cycles.

Its main properties are obtained by applying S-duality to the DBI action on the resolved

background. In particular, the theory has fractional gauge couplings τi; the couplings are

independent and hence cannot come from a UV theory which is the usual N = 1 SYM

with superpotential W (Φ).

More importantly, the effective superpotential of the field theory depends holomor-

phically on the couplings (ak). The dimension of the chiral ring (Nvac) is thus invariant

under changes δak. We used this property to map a generic point in field space (Si) to the

conifold limit, while preserving the number of vacua. In this semiclassical limit we showed

that Nvac is finite.

Finally, we computed explicitly this number for the two simplest singularities, namely

the conifold point and the n = 2 Argyres-Douglas point. The results from the gravity

side and gauge side match. This agreement is nontrivial since it involves quite different

concepts on both sides.

Let us compare both formulas. The gravity formula
∫

det(−R − ω) relates supersym-

metric vacua to the geometry of the moduli space. A simple topological interpretation [4]

is that it gives the number of zeroes of the section DiWeff ∈ Γ(MΩ⊗L). Clearly, it is ex-

plicitly invariant under symplectic transformations. However, the analysis of singularities

is not straightforward, in particular because the blow-up procedure becomes very involved

as we analyze higher codimension singularities.

On the other hand, the physics underlying the gauge theory result is that of fractional

instantons, bound states of 5-branes, RG flow of the gauge couplings and combinatorics

between the matrix model cuts. The formula is explicitly finite after the mapping to the

semiclassical region. As a result, we recognize the exponent p in (6.11) as the degree of the

tree-level gauge superpotential W (Φ) in which the singularity may be minimally embedded.

We should nevertheless point out that for n ≥ 3 there remain symplectic generators that

have to be fixed by further restricting the fluxes to a fundamental region and this is in

general complicated. Another issue is that the combinatorics grows very rapidly with n

and numerical computations become more difficult.

A technical point that could be addressed in the future is to understand better the

origin of subleading corrections to the gravity formula. These appear because the flux

space is in fact a lattice. The gauge theory approach might help in this direction.

We should note that the present results are based on the duality between the closed

(deformed) and open (resolved) sides. We haven’t been able to fully prove this, although
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we did show that both sectors have the same IR physics. It would be very interesting to

continue this, perhaps with a supergravity analysis along the lines of [29]. If a lift to M-

theory is possible, the geometric transition might reduce to a duality between M5 branes,

as in the Dijkgraaf-Vafa context.
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